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A Computationally Efficient Algorithm for
Determining Regional Cerebral Blood Flow in
Heterogeneous Tissues by Positron Emission

Tomography
Kathleen Schmidt* and Louis Sokoloff

Abstract—Inclusion of brain tissues with different rates of
blood flow and metabolism within a voxel or region of interest
is an unavoidable problem with positron emission tomography
due to its limited spatial resolution. Because regional cerebral
blood flow (rCBF) is higher in gray matter than in white matter,
the partial volume effect leads to underestimation of rCBF in
gray matter when rCBF in the region as a whole is determined.
Furthermore, weighted-average rCBF itself is underestimated
if the kinetic model used in the analysis fails to account for the
tissue heterogeneity. We have derived a computationally efficient
method for estimating both gray matter and weighted-average
rCBF in heterogeneous tissues and validated the method in simu-
lation studies. The method is based on a model that represents a
heterogeneous tissue as a weighted mixture of two homogeneous
tissues. A linear least squares algorithm is used to estimate the
model parameters.

Index Terms—Brain, blood flow, least squares methods, positron
emission tomography.

I. INTRODUCTION

M ETHODS for determination of regional cerebral blood
flow (rCBF) with freely diffusible tracers are based on

the equation that Kety derived in his analyses of the principles
of inert gas exchange [1], namely

(1)

where
and concentrations of tracer in tissue and arterial

blood, respectively;
rate of blood flow per unit mass of tissue, and
tissue:blood partition coefficient for the tracer
and tissue in question.

Equation (1) assumes tissue homogeneity and diffusion equilib-
rium between blood and tissue. For methods used in the satura-
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tion mode, is the time after injection of tracer into the blood
and 0. Algorithms for determining cerebral
blood flow are based on the solution of (1), i.e.,

(2)

or an integration of (1), i.e.,

(3)

The first method for measurement of rCBF in man with positron
emission tomography (PET) used HO as the tracer [2], [3].
The H O method relied on a single integrated tissue measure-
ment acquired after a finite interval of time following admin-
istration of the tracer, and (2), integrated over the same time
interval, was solved for with a prespecified value for [2],
[4]. With advances in scanner and computer technology that al-
lowed rapid acquisition and storage of multiple frames of data,
methods were introduced that estimatedand simultane-
ously from a series of measurements of tissue concentration
[5]–[12]. Several of these methods were designed to reduce re-
construction time by using integrals [9] or weighted integrals
[5]–[8], [12] of the projection data, together with linear estima-
tion procedures, for determining the parametersand . Linear
methods, however, have been shown to possess small to mod-
erate degrees of bias in the estimates [13]. Fenget al. [14] in-
troduced a generalized linear least squares approach to remove
the bias in the estimates arising from statistical dependencies in
the data.

It was recognized from the outset that a model designed for
application in homogeneous tissues might be inaccurate when
applied to tissues measured with PET as the limited spatial reso-
lution of the scanner assures that most tissue measurements rep-
resent a mixture of gray and white matter. Errors due to hetero-
geneity were considered to be small [2], [4], [7], [10]–[12], [15],
[16]; their magnitude depends on a number of factors such as the
duration of experimental period, time course of arterial concen-
tration of tracer, values of, differences in rates of blood flow in
the components of the mixed tissue, relative masses of tissues,
and method for estimation of the parameters [17]. In simula-
tions of PET H O studies, weighted-average flow underesti-
mation ranged from 5% in short-duration studies [2], [10] to
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approximately 20% in longer-duration studies [10]. These sim-
ulations did not take into account noise in the measurements of
tissue activity that has the potential to further degrade estimates
of weighted-average blood flow.

The unavoidable inclusion of white matter in measurements
of gray matter activity leads to a second problem. Weighted-av-
erage flow in a gray matter region depends on the amount of
white matter included in the region of measurement whereas
one would like to know the flow in the gray matter only. In
fact, the average gray:white rCBF ratio is often considered to
be indicative of the severity of the partial volume effects of the
scanner. In studies that utilized the relatively high spatial resolu-
tion of quantitative autoradiography, the gray:white rCBF ratio
was found to be greater than 4:1 in cortical structures in the con-
scious cat [18] and conscious rat [19] whereas with PET mea-
surements in normal human brain it is at best of the order of 3:1
[20]. There have been a number of methods proposed to estimate
and correct for partial volume effects, most of which require use
of a high resolution magnetic resonance image of the subject
coregistered to the PET image. It would be useful if the gray
matter flow could be determined along with the weighted-av-
erage flow from the dynamic PET scans alone.

II. THEORY

Consider a tissue that is comprised of a mixture of two ho-
mogeneous tissues, e.g., gray and white matter. The model for
distribution of a freely diffusible tracer in each tissue is as given
in (1); the concentration of tracer in the two homogeneous tis-
sues can be described by the set of equations

(4)

where
and concentrations of the tracer in Tissues 1 and

2;
and blood flow per unit mass of Tissues 1 and 2;
and respective tissue:blood partition coefficients

for the tracer and tissues in question;
concentration of tracer in the arterial blood.

The concentration of tracer in the mixed tissue is the weighted
sum of the concentrations in the homogeneous tissues com-
prising the mixture, i.e.,

(5)

where and are the relative tissue weights.
For this single-input single-output system, an equation can be
derived to relate to integrals of and (see Appendix I).
The resultant equation is

(6)

where the coefficients are given by

(7)

and and represent
the weighted-average blood flow and blood:brain partition
coefficient, respectively, in the mixed tissue. Because the four
coefficients depend on five independent parameters, namely

, and , the parameters will not be identifiable
unless some additional information is utilized. In the next
section we introduce a set of physiological constraints to render
the parameters identifiable.

A. Physiological Constraints: The Blood:Brain Partition
Coefficient

When O-labeled water is used as a blood flow tracer, the
tissue:blood partition coefficient for the tracer can be deter-
mined from the water contents in brain tissue and whole blood;
partition coefficients of 0.98 and 0.82 ml blood/g brain have thus
been assigned to gray matter and white matter, respectively [21].
For other blood flow tracers, the blood:brain partition coeffi-
cient can be measured in equilibrium experiments. Therefore,
to reduce the number of parameters to be estimated, we assume
that and are known.

B. The Linear Least Squares Algorithm: Equal Partition
Coefficients in the Tissues

We consider first a hypothetical blood flow tracer which has
equal blood:brain partition coefficients in all homogeneous con-
stituents of the mixed tissue, i.e., , where is
assumed to be known. From (7) we have , and this
constraint can be incorporated directly into (6) as

(8)

This suggests the following algorithm. Given a series of mea-
surements of the tissue concentration made over the intervals

, form the vector

(9)
(where Tr denotes the vector transpose) and the matrix (see (10),
shown at the bottom of the next page). Then

(11)

is the weighted least squares estimate offor the weighting
matrix . is usually the inverse of the covariance matrix of
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the errors in the measurements. Estimates of the parameters
, and are found by solving (7), i.e.,

(12)

C. Additional Physiological Constraints

Physiological constraints require that the parameters
be positive and relative tissue weights be

nonnegative. Since , this further implies that
. Rather than implement directly these con-

straints, which are nonlinear in the coefficientsand would,
therefore, introduce a considerable computational burden, we
took a somewhat pragmatic approach that assumed that fits
that violated these conditions were due to either insufficient
heterogeneity in the region (too small a content of either gray or
white matter) or noise levels too high to detect physiologically
valid parameters from the heterogeneous tissue model. In these
cases, the tissue was considered to be indistinguishable from a
homogeneous tissue and only weighted-average flow was esti-
mated from . Additionally, in order to avoid ill conditioning
in the estimate , tissues for which the difference between
the estimates and was less than 10% of their mean were
arbitrarily classified as homogeneous.

D. The Algorithm for Unequal Partition Coefficients in the
Tissues

In the case of unequal blood:brain partition coefficients for
the two tissues comprising the mixture, i.e., is un-
knowna priori owing to the fact that it depends on the value of

, which is to be estimated. Hence the least squares estimation
procedure outlined in the previous section must be modified.
Rather than introduce nonlinear constraints, we chose to imple-
ment an iterative procedure that starts with an initial estimate of

(the mean of and ), performs the least squares estimation
of the parameters to produce new estimates ofand , and re-
peats until either the percentage change in successive estimates
of is below a prespecified tolerance, or a maximum number
of iterations is reached. Physiological constraints are imposed
only after convergence of. As implemented, the tolerance for
change in estimates ofwas set at 0.5%, and a maximum of ten
iterations were used.

E. Reducing the Number of Parameters: An Algorithm for Use
When White Matter Flow Is Known

Cerebral blood flow in white matter has been shown to be
fairly homogeneous in conscious animals [18], [19]; this is most
probably true in the human brain as well. Furthermore some
white matter regions in the human brain, such as the corpus cal-
losum, are sufficiently large in comparison with the spatial res-
olution of the PET scanner that it should be possible to measure
their blood flow on the basis of a homogeneous tissue model.
This suggests the possibility of introducing a further constraint
on the system of equations in order to reduce the variance in the
estimates of gray matter flow.

The constraint setting the value of white matter flow to a fixed
value implies that and are not longer independent, but
related by

(13)

Substituting (13) into (8) yields

(14)

The parmeters and are then estimated by defining the
vector (see (15) shown at the bottom of the page) the matrix
(see (16), shown at the bottom of the page) and solving the linear
least squares problem as in the previous sections, i.e.,

(17)

F. Correction for Delay and Dispersion in the Measured Input
Function

Inaccuracies in the measured input function, including delay
between the tracer appearance time in the brain and that at the
arterial sampling site as well as dispersion of the measured func-
tion are well known to lead to systematic errors in rCBF determi-

...
...

... (10)
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nations (see, e.g., [22] and [23]). Of the strategies developed to
take these factors into account, the multilinear minimization ap-
proach for simultaneous estimation of input function delay and
dispersion [24] is particularly suited to adaptation for use with
the current estimation procedures. Briefly, with this approach
the dispersion of the measured input function, , is approxi-
mated by a monoexponential function, i.e.,

(18)

where is the time constant of the dispersion, and a delay of
length is taken into account by shifting the time scale of of
the measured input function, , so that

(19)

Substituting (19) into (6) yields

(20)

where through are defined in (7). Multilinear minimiza-
tion consists of considering a range of possible values for;

for each fixed the linear least squares problem is solved
and resultant weighted residual sum of squares determined. The
value of for which the residual sum of squares is minimum
is chosen, and the best parameter estimates are those corre-
sponding to the chosen .

When white matter blood flow is known inclusion of the delay
and dispersion of the input function in the estimation of gray
matter and weighted-average blood flow is accomplished by
computing [see (21), shown at the bottom of the previous page]
and solving the linear least squares problem as in the previous
sections, i.e.,

(22)

where y is given in (15). In this case

(23)

is given by (13), is the smaller (real) root of
0, and is the larger root of 0.

III. SIMULATION STUDIES

Computer simulations were performed with a range of gray
matter blood flows, relative tissue compositions, and noise
levels in the tissue measurements in order to determine the bias
and variance of the estimates of gray matter and weighted-av-
erage blood flow. An input function from the literature was
used [7]; it represents the activity, corrected for radioactive

... (15)

...
...

... (16)

...
...

...
...

(21)
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Fig. 1. (A) Input function used in simulations, from [7]. (B) Simulated
noise-free concentration of HO in a heterogeneous tissue that is comprised
of 50% gray matter withF = 80 ml/100 g/min and� = 0.98, and 50%
white matter withF = 20 ml/100 g/min and� = 0.82. Input function
represents activity, corrected for radioactive decay of the isotope, in whole
blood following intravenous bolus injection of HO. Units of activity are
arbitrarily scaled.

decay of the isotope, in whole blood following intravenous
bolus injection of H O [Fig. 1(A)]. Tissue activity curves were
computed for white matter ( 20 ml/100 g/min) and gray
matter ( 40, 50, 60, 80, 110, or 120 ml/100 g min), and
their weighted average determined ( 0.05, 0.1, 0.2, 0.5,
0.8, 0.9, or 0.95) [Fig. 1(B)]. Blood:brain partition coefficients
were those of water, i.e., 0.98 and 0.82 ml blood/g brain for
gray and white matter, respectively [21]. The PET scanning
schedule was assumed to consist of 12 10-s scans followed by
four 30-s scans for a total scanning time of 4 min. Total tissue
activity was integrated over each scan interval. Pseudorandom
noise was generated from a zero-mean Gaussian distribution
to simulate the Poisson noise of counting statistics. Although
Poisson statistics strictly apply only to sinogram data, and this
noise model (with variance scaled appropriately for the number
of resolution elements) applies in reconstructed data only to a
uniform disc of activity [25], it was used in the simulations to
give an initial indication of the performance of the algorithms.
Assuming perfect decay correction, the Thus the noise model
used was Gaussian with variance in the nondecay-corrected
tissue activity, , assumed to be proportional to the
number of counts collected in each scan interval, i.e.,

(24)

where is the isotope decay constant forO (
s ) and is a proportionality constant.coefficient of variation
for the decay-corrected tissue activity is the same as that of the

Fig. 2. Average coefficient of variation (COV) of simulated tissue
concentration in final four 30-s frames of data, i.e., 2–4 min after bolus
injection of isotope, for different noise proportionality constants�. Data are
for a mixed tissue comprised of 50% gray matter withF = 80 ml/100 g/min
and� = 0.98, and 50% white matter withF = 20 ml/100 g/min and� =

0.82; COV was similar in other mixed tissues.

nondecay-corrected tissue activity. Therefore, the variance of
the decay corrected activity, , is given by

(25)

As can be seen from (25), the variance depends on the ab-
solute units of , which derive from the units of
used in the simulation. The relationship between the propor-
tionality constant and the coefficient of variation in the
tissue measurements used in the present study is illustrated
in Fig. 2. All programs were written in Matlab Version 5.3.1
(The MathWorks, Inc., Natick, MA) and run on a personal
computer (Dell 410 workstation with dual 400-MHz Pentium
II processors, Dell Computer, Round Rock, TX). The systems
of differential equations were solved with fourth and fifth
order Runge-Kutta formulas [26]. Integrals of the simulated
measured tissue concentrations were computed by interpolating
between measurements by the method of weighted overlapping
parabolas [27]. Linear least squares estimations were conducted
on data integrated from zero time ( 0, (9)–(10), (15)–(16))
and on data integrated over each scan interval .
The weighting matrix for the linear estimations of (9)–(10)
was the diagonal matrix of inverses of the simulated tissue
measurements; linear estimations of (15) and either (16) or (21)
were unweighted. In the estimations that employed (15)–(16),
which assume a fixed value for blood flow in the white matter,

was set at 90%, 100%, or 110% of its true value. To inves-
tigate the effect of total scanning time, additional simulations
were performed in which scans terminated at 90, 120, 150,
180, 210, or 240 s. The effect of heterogeneity of gray matter
blood flows within a region of interest was investigated by
considering simulated tissue regions that included a mixture
of two, three, or five gray matter compartments plus a white
matter compartment. The distributions of gray matter flows
had a mean of 80 ml/100 g/min and standard deviation of20
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ml/100 g/min; the coefficient of variation of 25% was chosen
to produce a distribution similar to that of gray matter rCBF
measured in the cat [18]. In this set of simulations gray matter
flows estimated by use of (15)–(16) were compared to the
mean gray matter blood flow for the distribution. Simulations
were also performed with delays in the input function ranging
from 5 to 5 s and dispersion time constants of 0, 5, or 10
s. A total of 1000 simulations was performed for each set of
parameters, and the mean, variance, and mean square error for
each parameter estimate was computed. For comparison, gray
matter and weighted-average rCBF were also computed by a
modification of the least squares search algorithm of Koeppe
et al. [10] to allow for a weighted mixture of two tissues
(Appendix II). Additionally, weighted-average rCBF was
computed by three algorithms that are based on a homogeneous
tissue model: the least squares search algorithm [10] and the
linear least squares algorithm of Fenget al. [14], the latter
with and without a constraint fixing the tissue:blood partition
coefficient at the arithmetic mean of the gray and white matter
values, i.e., 0.9 ml blood/g brain.

IV. RESULTS

Errors in estimating weighted-average blood flowin a het-
erogeneous region by use of the homogeneous and heteroge-
neous tissue models are shown in Figs. 3–5. The greatest biases
in occured when a homogeneous tissue model with a fixed
partition coefficient was used in the estimation. With this model,
one of the greatest underestimations ofwas found when the
two tissues in the mixture were equally weighted [Fig. 3(A)];
note that in this particular case the error cannot be attributed
to use of an incorrect value for the weighted-average partition
coefficient, as the true weighted-average value for this tissue
was used. When both flow and partition coefficient were es-
timated with the homogeneous tissue model, the partition co-
efficient was consistently underestimated. For example, at low
noise levels in a tissue comprised of 50% gray matter in which
blood flow was four times that of white matter the mean esti-
mated was 0.79 ml/g, a bias of 13%. The bias in was re-
duced when both flow and partition coefficient were estimated
[Figs. 3(A), 4(A), and 5(A)]. The degree of underestimation of

[Fig. 4(A)] and (data not shown) increased as the ratio of
gray matter blood flow, , increased relative to white matter
blood flow, . Biases in estimated were negligible when
tissue heterogeneity was taken into account in the kinetic model
[Figs. 3(A) and 4(A)], but the variance in the estimates was
higher than when homogeneous tissue models were employed
[Figs. 3(B) and 4(B)]. Overall, the root mean square (rms) error
was smallest with the heterogeneous tissue model [Figs. 3(C)
and 4(C)]. Only at the highest noise level examined were er-
rors in the estimates of with the heterogeneous tissue model
greater than those obtained by use of the homogeneous tissue
model (Fig. 5).

Errors in estimating gray matter blood flow, , by use of a
heterogeneous tissue model are shown in Fig. 6. Total rms error
was lowest, and fractional detection of heterogeneity in the re-
gion was highest, when the modified least squares search algo-
rithm was used. Computation time with this algorithm, however,

Fig. 3. Errors in estimation of weighted-average blood flow in heterogeneous
tissues comprised of various fractions of gray matter. The two-parameter
least squares search algorithm (LSS, 2K) [10], which estimatesF and�(x),
the one-parameter constrained linear least squares algorithm (CLLS, 1K)
[14], which estimates onlyF (squares), and the two-parameter unconstrained
linear least squares algorithm (LLS, 2K) [14], which estimates bothF and
� (diamonds), assume a homogeneous tissue model. The constrained linear
least squares algorithm that estimates the three parametersF ; F , andw
(CLLS, 3K) assumes a heterogeneous tissue model (triangles). Blood flows in
gray and white matter areF = 80 ml/100 g/min andF = 20 ml/100 g/min,
respectively; corresponding partition coefficients are� = 0.98 and� =
0.82.

was about 500-fold higher than that of the constrained linear
least squares algorithms; the former algorithm required an av-
erage of 212 min to estimate flow in 1000 simulated regions
compared to an average of 0.43 min for the linear methods. In
most cases two to three iterations were required for the linear
algorithms. Use of data integrated over each individual frame
consistently produced better estimates ofthan use of data in-
tegrated from zero time (Fig. 6). Higher ratios of gray matter
to white matter blood flow also produced better estimates of
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Fig. 4. Errors in estimation of weighted-average blood flow in heterogeneous
tissues comprised of 50% gray matter. The two-parameter least squares search
algorithm (LSS, 2K) [10], which estimatesF and�(x), the one-parameter
constrained linear least squares algorithm (CLLS, 1K) [14], which estimates
only F (squares), and the two-parameter unconstrained linear least squares
algorithm (LLS, 2K) [14], which estimates bothF and� (diamonds), assume
a homogeneous tissue model. The constrained linear least squares algorithm
that estimates the three parametersF ; F , andw (CLLS, 3K) assumes a
heterogeneous tissue model (triangles). Blood flow in white matter isF =
20 ml/100 g/min; flows in gray matter are 40, 60, 80, or 120 ml/100 g/min.
Partition coefficients are� = 0.98 and� = 0.82 in gray and white matter,
respectively.

(data not shown). In tissues that contained80% gray matter,
dectection of heterogeneity was poor, and in tissues comprised
of 50% gray matter the fractional rate of detection of hetero-
geneity decreased by about 50% as noise levels increased (data
not shown). At all noise levels estimates ofhad higher errors
than did estimates of .

When the linear estimation was further constrained by fixing
the value of white matter flow, the estimates of gray matter flow
were greatly improved, particularly in tissues that contain at

Fig. 5. Errors in estimation of weighted-average blood flow in heterogeneous
tissues comprised of 50% gray matter as a function of noise in the tissue
activity. The two-parameter least squares search algorithm (LSS, 2K) [10],
which estimatesF and �(x), the one-parameter constrained linear least
squares algorithm (CLLS, 1K) [14], which estimates onlyF (squares), and
the two-parameter unconstrained linear least squares algorithm (LLS, 2K)
[14], which estimates bothF and� (diamonds), assume a homogeneous tissue
model. The constrained linear least squares algorithm that estimates the three
parametersF ; F , andw (CLLS, 3K) assumes a heterogeneous tissue model
(triangles). Blood flows in gray and white matter areF = 80 ml/100 g/min
andF = 20 ml/100 g/min, respectively; corresponding partition coefficients
are� = 0.98 and� = 0.82.

least 20% gray matter (Fig. 7). The errors introduced by per-
forming the analysis with over- or underestimated values of
is greatest in those tissues that contain the highest proportion
of white matter (Fig. 7), but biases were small (10%) in tis-
sues that contain at least 50% gray matter [see Fig. 7(A)]. Total
rms error in the estimate of decreased with an increasing
flow ratio between gray and white matter (data not shown); at
low noise levels it was under 10% for a tissue comprised of
equal weights gray and white matter whose flow ratios were3.
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Fig. 6. Errors in estimation of gray matter blood flow in heterogeneous tissues
comprised of various fractions of gray matter. The modified least squares
search algorithm (Appendix II) (diamonds) is compared to the constrained
linear least squares algorithm (CLLS) with data integrated over each scanning
frame (squares) or integrated from the start of the experiment (triangles). All
algorithms assume a heterogeneous tissue and estimate the three parameters
F ; F , andw . Blood flows in gray and white matter areF = 80 ml/100
g/min andF = 20 ml/100 g/min, respectively; corresponding partition
coefficients are� = 0.98 and� = 0.82.

With increasing noise levels, total rms error in the estimate of
increased and fractional detection of heterogeneous tissue

decreased (Fig. 8). At low noise levels ( 0.1), total rms er-
rors were 4%, 7%, or 17% for tissues comprised of 90%, 50%, or
20% gray matter, respectively [see Fig. 8(C)], and heterogeneity
was detected in 100% of the simulated tissues [see Fig. 8(D)].

Fig. 7. Errors in estimation of gray matter blood flow with heterogeneous
tissue model in which white matter blood flow is known. The constrained linear
least squares algorithm with data integrated over each scanning frame was used
and assumed values ofF fixed at 100% (triangles), 110% (squares), or 90%
(circles) of their true value. Two parameters,F andw , were estimated. Blood
flows in gray and white matter areF = 80 ml/100 g/min andF = 20 ml/100
g/min, respectively; corresponding partition coefficients are� = 0.98 and
� = 0.82.

At the hightest noise level ( 50), fractional detection of
heterogeneous tissue decreased to approximately 51%, 66%, or
66% [see Fig. 8(D)] and total rms error increased to 69%, 65%,
or 69% [see Fig. 8(C)] for tissues comprised of 90%, 50%, or
20% gray matter, respectively.

The influence of the total scanning time on the estimates of
gray matter flow in a heterogeneous tissue is shown in Fig. 9.
Errors in the estimates are little changed by extending the total
scanning period from 2 to 4 min after intraveneous administra-
tion of the tracer. In predominantly gray matter regions, how-
ever, optimal detection of tissue heterogeneity, which is required
to obtain an estimate of gray matter flow, requires a total scan-
ning time of not less than 2.5–3 min.

Heterogeneity in gray matter flow had little effect on errors
in estimation of (Fig. 10) for the symmetric distributions
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Fig. 8. Errors in estimation of gray matter blood flow with heterogeneous
tissue model in which white matter blood flow is known. The effects of
increasing noise levels are shown for a mixed tissue that is predominantly
white matter (20% gray, triangles), equal fractions of gray and white matter
(50% gray, squares), or predominantly gray matter (90% gray, circles). The
constrained linear least squares algorithm with data integrated over each
scanning frame was used with an assumed value ofF fixed at 100% of its
true value. Two parameters,F andw , were estimated. Blood flows in gray
and white matter areF = 80 ml/100 g/min andF = 20 ml/100 g/min,
respectively; corresponding partition coefficients are� = 0.98 and� =

0.82.

of gray matter flow considered. In tissues comprised of 50%
gray matter, heterogeneity of gray matter flow introduced only
a small additional bias compared to a region in which the gray
matter flow was uniform [see Fig. 10(A)]. Heterogeneity of gray
matter flow had no effect on either the variance in the estimates
or the fractional detection of heterogeneity in the tissue as a
whole [see Fig. 10(D)].

Fig. 11 illustrates the biases introduced into the estimation of
gray matter flow by delay and dispersion of the measured input
function relative to the true input function. When no corrections
for delay and dispersion were made and only the two parameters

and estimated, large biases in the estimated gray matter
flow resulted [see Fig. 11(A)]. When delay and dispersion were

Fig. 9. Errors in estimation of gray matter blood flow with heterogeneous
tissue model in which white matter blood flow is known. The effects of
terminating the PET scanning process at various times between 90 s and 4 min
are shown for a mixed tissue that is predominantly gray matter (90% gray,
circles), equal fractions gray and white matter (squares), or predominantly
white matter (20% gray, triangles). The constrained linear least squares
algorithm with data integrated over each scanning frame was used;F was
fixed at 100% of its true value. Two parameters,F andw , were estimated.
Blood flows in gray and white matter areF = 80 ml/100 g/min andF =

20 ml/100 g/min, respectively; corresponding partition coefficients are� =

0.98 and� = 0.82.

simultaneously estimated by multilinear minimization, biases
in the estimates of gray matter flow were largely eliminated
[see Fig. 11(B)]. Estimation of four parameters rather than two,
however, led to increases in the coefficients of variation of the
estimates from 7%–8% to 9%–12%. In general, at all noise
levels rms error in the estimates of gray matter flow were some-
what higher and fractional detection of heterogeneity somewhat
lower when delay and dispersion of the input function were esti-
mated simultaneously with the estimation ofand (Fig. 12)
than when the input function was assumed to have been fully
corrected prior to the estimation and only and were de-
termined (Fig. 8).
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Fig. 10. Errors in estimation of weighted-average gray matter blood flow
with heterogeneous tissue model in which white matter blood flow is known.
The effects of heterogeneity of flow in the gray matter are shown. The total
tissue mixture is comprised of 50% gray matter, 50% white matter. Gray
matter blood flows are either homogeneous (1 gray matter compartment,
F = 80 ml/100 g/min), or a heterogeneous mixture of two, three, or five
compartments distributed such that the weighted-average gray matter blood
flow is 80 ml/100 g/min, and the coefficient of variation of the distribution is
�25%. The two compartment gray matter distribution contains 50% tissue
with a flow of 60 ml/100 g/min, and 50% tissue with a flow of 100 ml/100
g/min. The three compartment gray matter distribution is comprised of 22%
tissue with a flow of 50 ml/100 g/min, 56% tissue with a flow of 80 ml/100
g/min, and 22% tissue with a flow of 110 ml/100 g/min. The five-compartment
distribution is comprised of 8%, 20%, 44%, 20%, and 8% tissues with flow
rates of 40, 60, 80, 100, and 120 ml/100 g/min, respectively. The constrained
linear least squares algorithm with data integrated over each scanning frame
was used;F was fixed at 100% of its true value. Two parameters,F and
w , were estimated. Blood flow in white matter isF = 20 ml/100 g/min;
partition coefficients in gray and white matter are� = 0.98 and� = 0.82,
respectively.

V. DISCUSSION

Many gray matter structures in the human brain are small
compared to the spatial resolution of even the most advanced
PET scanners currently in use. Particularly in cortical regions,
where the gray matter forms a winding band only 2–3 mm thick,
measurements of activity unavoidably include neighboring

Fig. 11. Bias in estimation of gray matter blood flow in heterogeneous tissue
due to delay and dispersion of the measured input function with respect to
the true input function. Delay due to timing errors between the measured and
true input function range from�5 s to+5 s, and the dispersion time constant
of the sampling system,� , is 0, 5, or 10 s. Tissue is 50% gray matter. The
heterogeneous tissue model, with white matter blood flow assumed to be
known, was used in the estimation. In the upper panel (A), no corrections for
delay and dispersion were made; two parameters,F andw , were estimated.
Errors in the input function resulted in large biases in the estimated gray matter
flow; coefficients of variation in the estimates were 7%–8%. In the lower
panel (B), the four parametersF ;w , delay, and� were determined. Biases
in the estimates were removed, but the coefficients of variation in the estimates
increased to 9%–12%. The constrained linear least squares algorithm with data
integrated over each scanning frame was used;F was fixed at 100% of its
true value. Blood flows in gray and white matter areF = 80 ml/100 g/min
andF = 20 ml/100 g/min, respectively; corresponding partition coefficients
are� = 0.98 and� = 0.82.

white matter tissue leading to the well-known partial volume
effect. Because blood flow in some cortical regions may be as
much as sixfold higher than in neighboring white matter [18],
weighted-average blood flow in the mixed tissue underestimates
gray matter flow. Furthermore, when the kinetic model used
to estimate flow fails to take into account the tissue hetero-
geneity, weighted-average flow itself is underestimated. Pre-
vious simulation studies, which considered the effects of het-
erogeneity but not noise in the data, found that the underestima-
tion of weighted-average flow was small [2], [4], [7], [10]–[12],
[15]–[17]. In the present study, we have expanded these inves-
tigations to include the influence of noise in the data, and con-
firmed that errors in weighted-average flow tend to be small.
This is partially due to the characteristics of the tissue:blood par-
tition coefficients used in the current study, i.e., those of water.
When a heterogeneous tissue that has two compartments with
efflux rate constants and is approximated by
a homogeneous tissue with an efflux rate constant of , in
general the greater the separation in the efflux rate constants
in the mixed tissue, the greater the errors due to assuming a
single efflux rate constant. For water, flow ratios of 4:1 result in
an efflux rate constant ratio of 3.3:1 ((4/0.98)/(1/0.82)). For
tracers that have partition coefficients in gray matter less than
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Fig. 12. Errors in estimation of gray matter blood flow due to increased noise
levels in the tissue activity data, in the presence of delay and dispersion in the
measured input function. Delay due to timing errors between the measured and
true input function,�t, was assumed to be 5 s, and the dispersion time constant
of the sampling system,� , 10 s. The mixed tissue was predominantly white
matter (20% gray, triangles), equal fractions of gray and white matter (50% gray,
squares), or predominantly gray matter (90% gray, circles). The heterogeneous
tissue model, with white matter blood flow assumed to be known, was used with
simultaneous estimation of�t and� . F was fixed at 100% of its true value.
Blood flows in gray and white matter areF = 80 ml/100 g/min andF =

20 ml/100 g/min, respectively; corresponding partition coefficients are� =

0.98 and� = 0.82. Compare with Fig. 8 in which there were no delays and
dispersions of the input function.

or equal to those in white matter, the effects of assuming a ho-
mogeneous tissue model in a heterogeneous tissue are greater.
A second factor ameliorating the impact of heterogeneity on the
estimates of weighted-average flow is the high degree of cor-
relation between the estimates ofand ; their simultaneous
estimation leads to smaller errors in the estimated weighted-av-
erage flow than when is fixed, even when it is fixed at its
true weighted-average value in the mixed tissue. We also ob-
served that the values ofestimated by use of a homogeneous
tissue model were smaller than those derived on the basis of
the water content of the tissues; our estimates were consistent
with the estimates of whole brain partition coefficient in human

studies [20]. When the tissue heterogeneity model was used,
weighted-average flow estimates were unbiased, but the inclu-
sion of an additional parameter in the model led to somewhat
higher variances in the estimates than when a homogeneous
tissue model was used.

Use of a kinetic model that assumes a homogeneous tissue,
though it does not result in excessive biases in estimates of
weighted-average blood flow, does not permit the estimation of
flow in thegraymatter.For this taskaheterogeneous tissuemodel
is required, and the simplest model of a heterogeneous tissue as
a weighted mixture of two homogeneous tissues was chosen.
This model has been previously used to investigate the errors in
weighted-average flow in a mixed tissue estimated with several
algorithms that assume a homogeneous tissue model, and reports
of H O PET studies in monkeys [28] and in humans [29] have
shown that the model can be used to estimate gray matter flow
in large regions of interest with nonlinear least squares fitting.
We have found that it is difficult to determine the parameters
of the heterogeneous tissue model with nonlinear least squares
algorithms, i.e., the final estimates are heavily dependent on
initial values of the parameters, and often the algorithms do not
converge; this is probably due to the low sensitivity of total tissue
activity to changes in white matter flow in regions that contain
a significant fraction of gray matter. Additionally, nonlinear
least squares algorithms require long computation times. In the
present study, we sought to avoid these problems by working
with linear least squares algorithms. The linear least squares
algorithms used in this study were found to be approximately
500 times faster than the least squares search algorithm [10].
Use of the constrained linear least squares algorithm to estimate
three parameters, however, resulted in biased estimates of gray
matter flow; the biases were larger in tissues that contained larger
fractions of white matter and in tissues with lower ratios of gray
matter to white matter blood flow. The biases in the estimates
of gray matter flow were almost entirely eliminated when the
additional constraint fixing the value of white matter blood flow
was included in the linear least squares estimation.

The heterogeneity model used in the current study assumes
homogeneity of flow in the gray matter component of the mixed
tissue. Yet gray matter flows in brain are themselves quite
heterogeneous. In the unanesthetized cat, for example, except
for one outlying small structure, gray matter rCBF ranged from
approximately 2–6 times (mean 4.1) that of white matter; the
standard deviation of the distribution was0.26 times the mean
[18]. When various symmetric gray matter rCBF distributions
with these characteristics were simulated, good estimates of
weighted-average gray matter flow were obtained despite the
modelassumption ofhomogeneityof graymatter flow. Accuracy
of the estimates remains to be determined if a specific tissue
region is found in which gray matter flow heterogeneity follows
another distribution, e.g., skewed, with a larger variance, or with
a greater overlap with white matter flow.

The rapid computational speed of the linear algorithms com-
pared with their nonlinear counterparts suggests that these algo-
rithmsmaybesuitableforapplicationatthepixellevel.Thehighest
noise level examined in the present study corresponded to a coef-
ficient of variation in the final 30-s scans of approximately 65%,
which is on the order of the noise levels one might expect in un-
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smoothed pixel level data [30]. At this noise level the coefficients
ofvariationofestimatesofbothweightedaverageandgraymatter
flowreached40%–60%,andthedetectionofheterogeneityfelloff
byasmuchas50%.Thehighdegreeofvariability in theestimates
calls forcaution inapplyingall blood flowcalculationmethods to
unsmoothedpixeldata,andsuggests thatapplication to lessnoisy
region of interest data may be more appropriate.

The present study was based on the use of a tracer that is freely
diffusible across the blood brain barrier. Although partition
coefficients for water were used in the simulations in this study
because H O is the most-widely used PET blood flow tracer
and is generally treated as freely diffusible, the results would be
expectedtoapply toother freelydiffusiblebloodflowtracerssuch
as [ O]butanol [31], [ C]butanol [32], or [ F]fluoromethane
[33] with appropriately substituted partition coefficients. Pos-
sible diffusion limitations of these tracers were beyond the
scope of the current study. The present study has also omitted
consideration of intravascular activity included in the PET data
and its effect on estimation of rCBF. Additionally, a tracer that is
freely diffusible across the blood-brain barrier may also diffuse
from brain regions that have a high concentration to regions
with a lower concentration during the course of the experimental
period. This effect was not considered in the present study and is
the subject of further investigation.

APPENDIX I
DERIVATION OF EQUATION FORMEASUREMENT OFCEREBRAL

BLOOD FLOW IN A HETEROGENEOUSTISSUE

Assume the model for distribution of a freely diffusible tracer
into a mixed tissue comprised of two homogeneous tissues is
given by the set of equations:

(A.1)

where
and concentrations of the tracer in tissues 1 and 2;

and blood flow per unit mass of tissues 1 and 2;
and respective tissue:blood partition coefficients

for the tracer and tissues in question;
concentration of tracer in the arterial blood.

The concentration of tracer in the mixed tissue is the weighted
sum of the concentrations in the two homogeneous tissues com-
prising the mixture, i.e.,

(A.2)

and are the relative tissue weights. Differenti-
ating (A.2) we have

(A.3)

which, after rearrangement, becomes

(A.4)

where is the weighted-average blood flow
to the mixed tissue. A second differentiation of (A.2) produces

(A.5)

Substituting the identities

and

into (A.5) we obtain

(A.6)

Finally, substituting (A.2) and (A.4) into (A.6) and simplifying
produces

(A.7)

where is the weighted-average blood : brain
partition coefficient in the mixed tissue. Noting the initial con-
ditions that and , as well as their first derivatives, are
zero at 0, twice integrating (A.7) yields the integral equation

(A.8)
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where

(A.9)

APPENDIX II
ADAPTATION OF THE LEAST SQUARESSEARCH ALGORITHM

FORUSE WITH A HETEROGENEOUSTISSUEMODEL

The least squares search algorithm [10] is based on a homoge-
neous tissue model which assumes that the tissue concentration
can be described by (2), namely

(A.10)

where
tissue concentration of tracer;
arterial input function;
blood flow per unit weight tissue;
brain:blood partition coefficient for the tracer and
tissue in question.

Given a series of measurements of tissue concentration accu-
mulated over the intervals , and an
arterial input function, , the algorithm precomputes the in-
tegrals

(A.11)

for a range of values of that covers the expected range of
values of in the tissue. Then, for each region or pixel,
for each value of , the linear least squares problem

is solved, where

(A.12)

(A.13)

and

(A.14)

The index is chosen for which is minimized.
The estimates of and are then given by

and (A.15)

To modify this algorithm to allow for a heterogeneous tissue,
we assume that the tissue is comprised of a weighted sum of two
homogeneous tissues so that

(A.16)

...

(A.18)

(A.19)

and

(A.19)
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where
and blood flows in Tissues 1 and 2;
and corresponding brain:blood partition coeffi-

cients;
fractional weight of Tissue 1.

Let and be the efflux rate constants from Tissues 1 and 2,
respectively, i.e., and . Inserting
these constants into (A.16) we obtain

(A.17)

We assume that and are known. The algorithm begins
by precomputing the integrals, as in (A.11). Then, for each
region or pixel, for each pair of values the linear
least squares problem is solved, where [see
(A.18)–(A.20) at the bottom of the previous page]. Indexes
and are chosen for which is minimized.
Then the estimates of , and are given by

and (A.21)

Note that because we assume that only those indexes
for which need to be examined.
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